Association of DNA-PK activity and radiation-induced NBS1 foci formation in lymphocytes with clinical malignancy in breast cancer patients.
نویسندگان
چکیده
DNA double-strand break (DSB) is one of the most deleterious lesions induced by DNA damaging agents. DSB repair pathway is implicated in maintaining genomic integrity via suppression of genetic instability and neoplastic transformation. DNA-dependent protein kinase (DNA-PK) has a pivotal role in DNA DSB repair. The Nijmegen breakage syndrome protein (NBS1), essential for DSB repair, re-localizes into subnuclear structures upon induction of DNA damage by ionizing radiation, forming so-called ionizing radiation-induced foci (IRIF), which is visualized by immunostaining. We measured DNA-PK activity and the number of persistent NBS1 IRIF per nucleus 24 h after irradiation of peripheral blood lymphocytes (PBL) from patients with sporadic breast cancer. Chromosomal aberrations were examined by cytogenetic methods. We examined the relationship between these measurements and clinical characteristics of patients such as tumor size, lymph node metastasis and nuclear grade of cancer cells. A higher number of NBS1 IRIF or lower DNA-PK activity correlated with higher chromosome instability. Patients whose PBL had lower DNA-PK or higher NBS1 IRIF had aggressive cancer phenotypes such as a larger tumor, higher nuclear grade and positive axillary lymph node metastasis. The combination of DNA-PK activity and NBS1 IRIF were useful for predicting lymph node metastasis. The ability of DSB repair in PBL is related to aggressive breast cancer phenotypes. Axillary lymph node dissection can be avoided by examining DNA-PK activity and NBS1 IRIF of PBL, which can contribute to improving the quality of life of breast cancer patients.
منابع مشابه
Radiosensitizing effects of melatonin on radiation induced chromosomal aberration in G2-lymphocytes of breast cancer patients
Background: Radiotherapy is regarded as a standard treatment modality in breast cancer (BC). Radiation causes cellular damage both in cancer and normal cells by inducing DNA-damage and chromosomal aberrations (CA). Different agents were used for ameliorating effects of radiation, mainly antioxidants such as melatonin. Melatonin shows oncostatic properties on human BC. The aim of this study was ...
متن کاملComparative study of chemo-sensitivity expressed as micronuclei in lymphocytes of breast cancer patients, their unaffected first degree relatives and normal controls as a possible prognostic marker
Background: Genomic instability is one of primary causes for malignant cell transformation. In this study induced genomic instability expressed as micronuclei in breast cancer (BC) patients with different stages of the disease compared with their unaffected first degree relatives (FDR) and normal unrelated controls was investigated. Materials and Methods: The background and net micronucleus fre...
متن کاملG2 chromosomal radiosensitivity and background frequency of sister chromatid exchanges of peripheral blood lymphocytes of breast cancer patients
Background: Chromosomal alterations play an important role in carcinogenesis. Enhanced chromosomal radiosensitivity is shown for many cancer predisposition conditions including breast cancer. In this study chromosomal radiosensitivity and the frequency of background sister chromnatid exchanges (SCE) in lymphocytes of normal individuals and breast cancer patients was compared. Materials...
متن کاملInterindividual differences in radiation-induced apoptosis of peripheral blood leukocytes in normal individuals and breast cancer patients
Background: Quantification of radiation-induced apoptosis in peripheral blood lymphocytes (PBLs) has been proposed as a possible screening test for cancer-prone individuals and also for the prediction of normal tissue responses after radiotherapy. Materials and Methods: The neutral version of the comet assay (single-cell gel electrophoresis) was used 24, 48, 72 hours after irradiation ...
متن کاملFunctional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses.
Rad50/Mre11/NBS1 (R/M/N) is a multi-functional protein complex involved in DNA repair, cell cycle checkpoint activation, DNA replication and replication block-induced responses. Ionizing radiation (IR) induces the phosphorylation of NBS1 and nuclear foci formation of the complex. Although it has been suggested that the R/M/N complex is associated with DNA damage sites, we present here biochemic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2007